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Lecture 9. The Damped Mechanical Oscillations

Oscillatory motion as a rule occurs in the presence of friction force. These forces result in a transformation of mechanical energy into heat. Oscillations like these are called damped oscillations. The frictional force is directly proportional to the velocity:
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where r is a coefficient of friction.

   Lets consider the spring pendulum. There are two forces acting on the body: the elastic force F = -kx and friction viscous force 
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Let us denote    
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We obtain:
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   The value 
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 is called the coefficient of damping. Thus we arrived at the differential equation of damped free mechanical oscillations. The solution of this equation may be expressed as 
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where 
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 is the cycle frequency of damped oscillation. We should not confuse 
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. Frequency 
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 is the cyclic frequency of the free oscillations in the absence of friction. 
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 is the cyclic frequency of the damped oscillations. According to solution of  (9.6)

                              
[image: image15.wmf].

m

2

r

m

k

;

2

2

2

0

÷

ø

ö

ç

è

æ

-

=

w

d

-

w

=

w

                                        (9.8)                                            
Thus 
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. Graph of damped oscillation is shown in fig.9.1.
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Figure 9.1
In a number of cases, the problem arises of analyzing the motion of a body simultaneous by executing two vibration motions. If 
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 is the displacement of the first vibration in the absence of the second, and 
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 the displacement of second vibration in the absence of the first, then, at each instant, for simultaneously occurring vibration process, 
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In the most general case, the component vibrations may differ in amplitude, frequency and phase. Let us first consider the case when the vibration have equal amplitudes and frequencies, but are displaced in phase. Then

      
[image: image22.wmf]t

cos

A

x

1

w

=

; 
[image: image23.wmf])

t

cos(

A

x

2

j

+

w

=

                                (9.9)       
and 
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where 
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. This means that the resultant vibration is also harmonic and has the amplitude
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The Spring Pendulum

Motion which repeats itself in the equal intervals of time is called oscillatory motion. If the oscillation includes a change only of mechanical quantities (displacement, velocity, acceleration) then we speak of mechanical oscillations.

   Let us consider the motion of so called spring pendulum. It consists of a spring of the coefficient of elasticity k and a fastened load of mass m (fig.9.2).
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Figure 9.2
The friction force is considered to be negligible
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, m and k are known. Our aim is to find equation 
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The only force along X-axis is the force of elasticity. Thus 

                                        
[image: image32.wmf]kx

F

i

-

=

å

.                                      (9.14)      
Consequently
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It is the differential equation of motion because it contains the second derivative of displacement with respect to time. The solution of this equation may be written as: 
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where  A, 
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 are constants. It can be proved easily:

                                            
[image: image39.wmf])

t

cos(

A

dt

dx

0

0

0

j

+

w

w

=

,                                         (9.18)  
                                              
[image: image40.wmf]).

t

sin(

A

dt

x

d

0

0

2

0

2

2

j

+

w

w

-

=

                                 (9.19)   
Substituting  (9.18-9.19)  to (9.16) we obtain: 
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It proves that this equation is correct. It should be emphasized that solution is not the only. The following solutions suit too:
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in the complex form:                                 
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  Now we should define constants A,
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. A is the amplitude of oscillatory motion. The amplitude is the largest deviation of the equilibrium position. It is expressed in meter: [A]=m.. Expression 
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 is called the phase and is measured by radians. 
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 is called the cyclic frequency 
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 is called a natural frequency of the pendulum. It is defined as: 
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Physical pendulum

The restoring moment in this case is the moment of the force of gravity which has an opposite sign to that of the angle of deviation 
[image: image53.wmf]a

 and equals
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 EMBED Equation.3  [image: image55.wmf]a
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where 
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 is the distance between the pivot and the centre of gravity of the body. When the angle deviation is small  
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will be proportional to the angle of deviation and the oscillations of the pendulum will be harmonic. The restoring moment is the product of the angular acceleration and the moment of inertia of the oscillating body
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where 
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 is a constant value providing the moment of inertia does not change during oscillations. From it follows that
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The Mathematical Pendulum

The point mass suspended by means of an unelastic thread is called the mathematical pendulum (fig.9.3). 
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Figure 9.3
The restoring force is the projection of the force of gravity P=mg on the direction of motion of the point mass. In this case 

                              F = P sin( = mg sin(,                                                (9.27)  
where ( = x/l, the angle between positions of l in free state and deviation state. If the angle ( is so small that sin( ( (, then 

                            F= mg(                                                            (9.28)   
and oscillations are harmonic.

Since this force is always directed to the equilibrium position and that is why it has a sign opposite to that of x: 

                                              F=( mg(.                                      (9.29)                  
The Newton’s second law is:  ma= ( mg( ,
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where x = lα..
Then                                
[image: image65.wmf]
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It is the differential equation of harmonic oscillations of mathematical pendulum. Solution of this equation is:

                             ( = (0 sin((0 t+(0).                                        (9.32)
The cyclic frequency (0 is equal to:
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The period of oscillations is equal to:
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Mathematical pendulum represents a particle with a mass m suspended by a weightless inelastic thread of length l. Hence,
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If the angles 
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 are so small that 
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since this force is always directed to the equilibrium position and that is why it has a sign opposite to that of 
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In this case the oscillation are harmonic. We got
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Lecture 10. Wave Motion. Principles of Acoustics

If a vibrating body is located in the elastic medium, it transmits disturbances to the adjoining particles thus causing periodically varying deformations (for example, compressive and extension strain).

Thus, periodically varying deformations, produced at any place of the elastic medium, will propagate in the medium with a certain velocity, depending on the physical properties of the medium. At this, the particles of a given medium perform oscillating motions about the positions of equilibrium, whereby, only the state of deformation is transmitted from one part of the medium to another.

The process of propagation of oscillatory motion in medium is called wave process, or, simply, a wave. Depending on the nature of elastic deformations produced in this process the waves may be longitudinal or transverse. In longitudinal waves the particles of medium vibrate along a straight line coinciding with the direction of vibrations propagation. In transverse waves the particles of medium vibrate perpendicular to the direction of wave propagation.

Wave Equation

In order to describe the wave process we have to find the amplitudes and phases of oscillating motion at different points of medium as well as the change of these magnitudes with time. Suppose that the wave propagates in the positive direction of the OX axis.

Denote the vibrating quantity by 
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. This quantity may represent: the displacement of the particles of the medium with respect to their position of equilibrium, deviation of pressure of the medium from the value of equilibrium. Let us assume that the time is chosen so that at the point O with 
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 is the angular frequency, T is period, 
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 is the amplitude of vibration and 
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 is sine argument, which defines the vibration quantity at specified instants, is the phase of vibrations at the point O. We have to find now the phase of vibrations at any other point A which is at the distance x from O.

     The phase of vibrations at the instant t at the point A is equal to the phase of vibrations at O at an earlier instant of time 
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Here c is the velocity of propagation phase of vibrations in the OX. Consequently, the equation for the vibrating quantity at point A at the instant t is equal to
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We can write the equation of the sinusoidal wave in the following general form
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where a minus sign denotes the value for the wave propagating in the direction of the increase of x and a plus sign – in the reverse direction.

The distance 
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 traveled by the wave per period of oscillation is known as a wavelength. It follows that
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Now let us find the partial derivative of the vibrating quantity 
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 with respect to time when x is constant
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The partial derivatives of 
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 with respect to x at t=const are
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This is the differential equation of a plane wave, propagating along the OX axis, obtained from the wave equation.
Standing Waves

Huygens principle: every point of the wave front, specified at a certain instant to, may be considered as independent wane source, starting to emanate at the instant to. These waves are called elementary or wavelets (secondary). They may be spherical, elliptical or many other, depending on the properties of the medium. By applying Huygens Principle by a geometrical method we may determine the location of the wave front at the successive instants of time, if this location is specified at the instant to. Addition of the vibrations at different points of the medium emanated by several waves is termed the interference of these waves. If the waves have the same frequencies and reach a given point of medium with a constant phase difference, then such waves are called coherent. The vibrating bodies that evoke coherent waves in medium are said to be coherent sources.

Let us examine the results of the interference of two sinusoidal plane waves of the same amplitude and frequency, propagating in opposite directions. The equations of these waves take the form
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At the point A on the coordinate x, according to the superposition principle, the resultant vibration motion is expressed in the form
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This equation shows that by virtue of interference between the direct and backwards waves at any point of the medium with fixed x-coordinate the harmonic vibrations with the same frequency 
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 occurs, but with the amplitude
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which depends on the value of x-coordinate. At the points of the medium there
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Vibrations are absent 
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represents a displacement curve of the standing wave.

The characteristic features of the standing wave, unlike that of an ordinary propagated or traveling wave:

1) the amplitudes of vibration in the standing wave are different at various places of system; there are nodes and antinodes of vibrations. These amplitudes in the traveling wave are the same everywhere;

2) all particles between any two adjacent nodes keep in phase with each other as they vibrate within the limits of the surface of system;

3) in the standing wave there is no unilateral transfer of energy as is the case with the traveling wave. The transformation of kinetic energy into potential energy and vice versa occurs within limit of the portion of the system from antidote to the nearby node. It may be noted that no energy transfer occur between such two adjacent portions.

Sound Vibrations and Waves

Sound vibrations, perceived by the human car, have frequencies ranging from 20 to 20000 hertz. Frequencies which are below 20 hertz are called infrasonic and above 20000 hertz – ultrasonic.

When a harmonic sound wave propagate in the air the excess pressure
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or the excess density
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change in accordance with

                      
[image: image116.wmf])

c

x

t

(

cos

p

p

0

-

w

D

=

D

, 
[image: image117.wmf]0

0

0

cv

p

p

=

D

             (10.17)  
                                     
[image: image118.wmf])

c

x

t

(

cos

0

-

w

r

D

=

r

D

                     (10.18) 
The intensity of sound (force) is called the rate of energy transfer per unit area perpendicular to the direction of propagation at a given point.
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where 
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 is the density of medium; 
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The amplitudes of displacement, velocities and acceleration of particles of a given medium during their oscillation in a sound wave, as well as 
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The product of the velocity of sound in the given medium and the density of the medium is an important characteristic of the medium and is called specific acoustic resistance. When the sound passes from one medium to another the frequency of this sound remains unaltered, but the wavelength changes proportionally to the velocity of propagation
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For example, if the sound wave of frequency v = 1.000 cps passes from air into water, then the wavelength in the air is
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 =3 32 m/sec: 1.000 1/sec = 1.4 m. If the wave source and the receiver move with respect to the medium, in the propagation of sound occurs, then the frequency of the sound 
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 emanated by the source, and the frequency 
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of the sound, percept by the receiver, will differ from each other – Doppler effect. Let us consider a particular case of propagation of a plain harmonic sound wave.

Suppose that:

1) the sound source moves relative to the medium with velocity u; the receiver is at rest. In this case, during one period of vibration T the sound wave may recede from the source at the distance cT, and the source itself will be displaced by uT. If the source moves away from the receiver, it moves in the direction opposite to that of propagation, and then the wavelength is
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But if the source moves toward the receiver, i.e, in the direction of wave propagation
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Then, the frequency of the sound which is percept by the receiver in both cases, may be expressed in the form
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when 
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 is the frequency of vibrations of the source;

2) the sound source is at rest, the receiver moves relative to the medium with the velocity 
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. In this case the wavelength in the medium equals 
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Yet, the two successive wave amplitudes will not reach the receiver after T seconds but after a longer or shorter time 
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 The sum of these values must be equal to the wavelength, hence 
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Since the frequency of the sound percept by the receiver is
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3) the source and the receiver move relative to the medium. Combining the arguments for the first and second cases we obtain the following expression
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Lecture 11. Electromagnetic Oscillations and Waves

Periodic oscillations in the value of the current intensity (or other quantities connected to it) are called electromagnetic oscillations, they are governed by the electric and magnetic properties of the circuit. Let us consider an electric oscillating circuit, i.e. a network consisting of a coil of inductance L and a condenser of capacitance C. We will denote the resistance of the network by R.

The electric current, which is changing with time, sets up a potential difference across the ends of the, equal to
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and has the opposite sign to the sign of the potential difference on the condenser plates. This means that the intensity of the induced field 
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 is directed opposite to the intensity 
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 set up in circuit by the condenser discharge.

As a consequence of this the rate of increase of current in the wires will slow down, i.e. 
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 (which has a positive sign) decreases until the condenser is completely discharged. The current intensity reaches its maximum value at this moment. The moving charges now begin to pile upon the opposite plate of the condenser, which leads to the greatest value of 
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 again directed against the motion of the charges and decreases therefore the current intensity. This decrease in current leads to the appearance of a self-induced e.m.f. and an induced field 
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directed opposite to 
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 and sustains the current in the circuit. A negative 
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 exists until the instant the current intensity becomes zero; then the condenser discharge begins again through the coil and the process repeats itself with the current flowing in the opposite direction.

In such a case we may use the second of Kirchhoff’s Laws for a closed circuit: the algebraic sum of all the e.m.f.’s and the drops in voltage is equal to zero at a given time. The self-induced e.m.f. has a sign opposite to the sign of potential difference on the condenser plates, that Kirchhoff’s Law is written as
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Let us assume from the beginning, that the ohmic resistance of the conductor which the circuit consist of, is very small, i.e.                                                     
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If the angular frequency and period of oscillation are:

                               
[image: image159.wmf]LC

1

=

w

; 
[image: image160.wmf]LC

2

2

T

p

=

w

p

=

                  (11.6) 
then we have 
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The solution of the differential equation gives the law of charge variation on the condenser plates
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The current intensity, potential difference V, the intensity of the electric field E between the condenser plates and the intensity of the magnetic field H inside the coil will also vary harmonically with time
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The oscillatory energy of electric field of the condenser and the magnetic field of the coil
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and does not change with time.

When value of the ohmic resistance R is too large to neglect then we must solve equation, which may be rewritten as
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Let us assume that the parameters of the circuit R, L and C are constant during the oscillations. Then the period of vibration and the coefficient of damping are also constants and the charge on the condenser plates varies according to the law
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The solution of the used equation using gives the following values for the damping coefficient 
[image: image171.wmf]d

, the angular frequency and the period of the vibration
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Forced Oscillations. Electrical Resonance

Forced electromagnetic oscillations are set up in circuit when it is connected to a source of periodic e.m.f., for example, by mutual induction of a circuit with the oscillations set up in the circuit drawn in figure. Assume that the external e.m.f. varies with time sinusoidal
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Let us find the amplitude, frequency and phase of the current intensity during forced oscillations in a circuit with given constant value of L, C and R when an external e.m.f. is present. When the frequency of the oscillations is not very large and the length of the wires in the circuit is short then we may take that the current intensity is the same in all parts of the circuit and so apply the second law of Kirhoff:
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After differentiating last equating with respect to time, we get the differential equation for the current intensity:
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Write the solution of this equation in the form
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so that by calculation we get the following values for the current amplitude and the phase difference between the current and external e.m.f.:
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The equality between the frequency of the external e.m.f. and the frequency of oscillations in the contour is called the condition for electrical resonance. All the amplitudes of all the electric and magnetic quantities which vary during the oscillations have their maximum values. Notice that the quantity 
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and the amplitude of the drop in voltage on the condenser is equal to that of the coil
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Electromagnetic Waves

Consider the system of two parallel wires in which forced electromagnetic oscillations are set up by an external source. The e.m.f. created in part AB by the external energy source starts the motion electrons; let us assume that initially the electrons start to flow from B to A. This motion is propagated along the wire AC with a certain finite velocity until the electron reaches C and starts to accumulate there. The upper wire becomes negatively charged while the lower one becomes positively charged, and an electric field is created in the space between the two wires; the wires AC and BD are thus equivalent to the plates of a condenser.

While as the electrons are in motion, they have a magnetic field around them. This varying magnetic field sets up an e.m.f. of self-inductance in the wires, which, from Lenz’s Law, opposes the increase or decrease of current in the wires. If the frequency of the external e.m.f. is very large then it is possible that the motion of electrons induced into the upper wire in the first period of oscillations, does not have time to reach the end of wire before the sign of the e.m.f. changes and it forces the electrons back in the opposite direction. The part of the upper wire near A will be positively charged while the part further away from A will be negatively charged. When the conduction wires are very long there will be certain regions with positive charge and the junctions between these regions will have no surplus charges.

Thus a certain distribution of positive and negative charges is formed. If the external e.m.f. is sinusoidal, then a sinusoidal distribution of charges, currents and potentials is set up.

The varying electric field creates a magnetic field and vice versa. Therefore electromagnetic field exists between the wires. Consequently, an electromagnetic field cannot be localized in a definite volume in space; it propagates from one point to another with a fixed velocity. It is called an electromagnetic wave.

The “radioactive capacity” of an electromagnetic wave source depends on its shape and size and on the frequency of oscillations. Let us now find the equation of a plane electromagnetic wave by using Maxwell’s equations in integral form.
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To simplify the discussion, assume that the vector 
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 of electromagnetic field, at the place where the field is created, is always parallel to the OZ axis of coordinates, and the vector 
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 is along the OY axis. We may choose Oabc lying in the XOY plane for the first integral, and the contour Odef lying in the plane XOY for second integral. For the contour Oabc we have


[image: image190.wmf]dxdy

t

D

]

H

)

dy

y

H

H

[(

2

1

dy

)]

dy

y

H

dx

x

H

H

(

)

dx

x

H

H

[(

2

1

dy

¶

¶

=

+

¶

¶

+

-

¶

¶

+

¶

¶

+

+

¶

¶

+

 (11.27)
After cancellations we get
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An analogous calculation using the second equation and the Odef gives the result
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From these equations we find
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From these equation we find 
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We have obtained the differential equation of a wave; this equation has as its simplest solution a sinusoidal wave
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where the vector 
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 propagates along the OX axis with velocity
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Electromagnetic waves transfer energy in the direction of their propagation. This energy is stored in the electric and magnetic fields and is therefore proportional to the squares of the intensities E and H of these fields.

Using the fact that the electric and magnetic fields have the following energy per unit volume

                                
[image: image200.wmf]2

H

2

E

2

0

2

m

m

+

ee

=

w

                               (11.34)     
and for the intensity of radiation or the energy density of the wave we got
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in vector form  
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The vector 
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 which is orientated along the direction of the wave propagation is called the Poynting vector. 
Lecture 12. Liquids and Their Properties
Molecular Pressure and Surface Tension
There are two important properties of liquids viscosity and fluidity. The viscosity of liquids is a property which is similar to internal friction in gases and it relates to the transfer phenomena occurring in a liquid medium. The viscosity of different liquids is estimated by the coefficient of viscosity η which defines the force of friction between two neighboring liquid lagers moving with respect to each other 
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where S is the surface of friction, 
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 is the velocity gradient.

The coefficient of temperature drop (proportionality to the mean velocity, i.e. to the square root of temperature), where as the coefficient of viscosity of fluids increases of cooling by the exponential internal friction of gases decreases with a law
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where A, b determined by liquids properties. (here k is Boltzman’s constant, ΔW is the energy of transition of molecules from the energy of transition of molecules from one of equilibrium to another.)

Fluidity of liquids is estimated by the value reciprocal to the coefficient of viscosity. Viscosity and fluidity are specified by that freedom of molecular motion within the volume of liquid which is provided by the cohesive forces between these molecules. The molecules of liquid are not connected between them selves by a rigid bond, unlike in solids; here each molecule continuously performing random thermal motion, changes simultaneously its disposition with respect to its “neighbors” and with time migrates within the volume of the vessel.

The molecules which are in the surface lager of the liquids are under the action of neighboring molecules located directly under this lager and deeper. Therefore, the resultant of force ƒi applied to each molecule of the surface lager
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  is not zero and its is directed inside the liquid 

Let us take a certain circular area S on the surface of the liquid. The molecules within this area are linked together by the interacting forces and, therefore, this monomolecular disc may be considered as a certain body. We shall presently take an interest in the external forces acting on this disc by other molecules of the liquid. First, a resultant force
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Which is directed  inside the liquid perpendicular to the area is applied to each molecule of area S. if we add up all these forces Ri and then divide them by the magnitude of the area S we obtain the pressure with which the surface lager acts on the remnant mass of the  liquid
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Besides the molecules of the surface lager of the liquid are the actions of the forces Fi in the plane tangential to the surface of this liquid. For all the molecules located inside the area S these forces Fi mutually balance each other. But for molecules located along the perimeter of the area S the forces Fi directed outwards remain unbalanced; they are perpendicular to the perimeter and tangential to the surface of this liquid. These external forces which stretch the film are called the forces of surface tension. The force of surface tension per unit length of the perimeter l of the area is called the coefficient of surface tension of a given liquid
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(its measured in Newton’s per meter). The pressure pn and the coefficient of surface tension α also depend on the medium neighboring with a given liquid. Let us consider the action of molecular forces at the line of common contact of three substance: liquid, solid and gas.

Figure illustrates the action of forces on each neighboring molecule the molecules of liquid ƒliquid, solid ƒsolid and gas ƒgas. In case of equilibrium the sum of all these forces must be zero
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 The angle of contact θ formed between the surface of the solid body and the tangential to the liquid surface is called a contact angle. If the liquid wets the solid body, the drop will spread over the surface of the body and the angle is θ < π/2. If the liquid does not wet the solid body the angle is θ > π/2.

At θ = 0 the liquid wets the solid completely, but at θ = π the surface is completely or absolutely unwanted/ similar arguments may help us to explain the spreading and the shape of drops of one liquid on the surface of another. Instead of forces F1, F2 and F12, acting tangential on one molecule, we may take the resultant force acting per unit length of the perimeter i.e. corresponding coefficients of surface tension: α1 - of the first liquid; α2 - of the second liquid; α3 - of the coefficient of surface tension at the line of contact between the first and second liquids. For attaining equilibrium of a drop we must  have:
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If α2 is greater than the right side of this expression, then the drop spreads; the angles θ1 and θ2 decrease at this and the spreading process until this drop is transferred into a thin film on the surface of the second liquid. There are cases when the first drops spreads over the surface of the second liquid in the shape of a film or dissolve in it, thus decreasing the coefficient of surface tension α2 of this liquid, so that the subsequent drops obey the condition for example, drops of fat  on a water surface. The coefficient of surface tension is measure by hundredths of N/m.
For water at 00 C
α=0.075, mercury =0.47, melted copper α=1.12. With the increase of temperature the value of α decreases and at critical temperature becomes zero when the difference between the liquid and its saturated vapour disappears. The value of α noticeably decreases if foreign substances or impurities are found in the surface lager.

Capillary Phenomena

If the liquid surface is not plane but curved the forces of surface tension create an additional pressure on this liquid which is added to pressure pn or deducted from it. Suppose that the liquid surface has the shape of sphere with radius R. on this liquid surface separate a certain area S resting on a circular foundation S0 of radius. 
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The forces of surface tension, acting along the perimeter of this area yield  the resultant which is perpendicular to S0 and equal to

                                     F0=α 2 π r cos θ                                       (12.9)           
(the sum of the components  F is zero).

Diving this force by S0 = πr2 we obtain the additional pressure on the liquid provided by the forces of tension which is due to the surface curvature 
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Here we examined a simple case when the liquid surface is surface is spherical. The formula for a more general shape becomes
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according to Laplace, where R1 and R2 are the principal radii of curvature of the surface of a given section. The normal to the surface may be interested by numerous planes. Among many radii of curvature we single out two: R1 – minimum and R2 – maximum; they are mutually perpendicular and called principal radii of curvature of the surface at the give point. For the general case the resultant pressure which is defined by the molecular forces acting on the surface lager is Laplace pressure
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Let us examine the application of this formula for capillary phenomena. Equal the difference pn - p1, p2 - pn of pressures to the hydrostatic pressure of the liquid column of height h which equal ρgh
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In the capillary tubes have a circular cross- section then R1=R2=R. for a special meniscus 
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In this case
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The angle θ is a contact angle. If the diameter of the capillary tube is very small then the shape of meniscus is close to spherical and hence, when full wetting occurs (θ = 0) the radius R ≈ r.

Let us consider a simple case with a soap bubble. The external (convex) surface compress the air in the bubble with pressure
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(since r1 ≈ r2) and, therefore the pressure of air inside the bubble p must be greater than that outside p0 by the value
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Suppose now, that by admitting air into the bubble we enlarge its radius by Δr, if Δr is small then Δp ≈ const and the work done for enlarging the bubble is 
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Find the relation this work to the change of face of the bubble film (inside and outside)
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Then                                
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Hence the coefficient of surface tension is numerically equal to the work performed during the change of liquids surface per unit are. It is measure in N/m or joules/m2

Molecular physics studies a system structure, consisting of a huge number of small particles. This part of physics deals with gases, liquids and solids. The main conception of the molecular physics is the following: all the matters consist of atoms and these atoms are continually in the state of disorderly motion. The particles of gases pass through large spaces without colliding. Then they collide with each other and fly apart in different directions.

An ideal gas satisfies the following condition:

1. The proper volume of molecules or atoms is negligibly small in molecules or atoms with that of vessel (V), in which gas is kept. 

2. The forces of interaction between molecules are absent. There are no attractive forces; 

3. The collisions of molecules with each other and with the vessel walls are elastic.

Microscopic and Macroscopic Parameters

Let us define so called macroscopic and microscopic parameters. Pressure, temperature, volume, mass and amount of substance belong to the first ones. Number of molecules, mass of a single molecule, velocities of molecules belong to the last ones. Our aim is to find a relationship between these two groups, which characterize the molecular systems. Let’s consider these concepts in detail.

Pressure is called force per unit of area.
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Units of P: 
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 Volume is usually denoted as V. Units of V:                                        [V] = m3. Temperature is related to the mean kinetic energy of molecules. The more kinetic energy of molecules, the higher is temperature. Units of temperature:  [T]=K.

The amount of substance is measured by number of moles. One mole of any substance contains 6,02
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1023 molecules or atoms. This value is called Avogadro’s constant NA: 

                              NA=6,02
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The unit of mass is taken equal to 
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 of the carbon isotope with an atomic mass of 12. This unit is called the atomic mass unit. (a.m.u.) 1 a.m.u.=1,66(10-27 kg.

The number of moles can be calculated as: 
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where m – is the mass of substance;  μ – molar mass, that is the mass of one mole of a substance. Units of μ:   [μ] = 
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Lecture 13. Ideal gas

When studying the properties of rarefied gases we may neglect the action of molecular forces since the size of molecules are very small we may also disregard the proper volume of gas particles in comparison with that of the vessel in which it is contained. Hence, we may introduce the conception of an ideal gas.
The ideal gas is such a gas which satisfies the following conditions:

1) the proper volume of gas particles in negligibly small in comparison with of the vessel in which this gas is kept;

2) the interacting forces between particles of ideal gas are absent;

3) the collision of molecules with each other and with the walls of the vessel are perfectly elastic;

4) the molecules of an ideal gas perform random thermal motion.

The Equation of State

Three basic properties or parameters of state may be selected from the various properties of a body. These are the pressure p, the volume V and the temperature T. it is immaterial which pair of parameters is selected from p, V and T. usually V and T are selected. The pressure P is then a function of V and T. We call the equation

                                     P = ƒ(V,T)                                             (13.1)    
the equation of state. Equations of state may be established only experimentally. To establish how a body expands with increasing temperature, at constant pressure, we must determine (∂V/∂T)p – the derivative of V with respect to T at constant pressure. The quantity
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is called the thermometric coefficient of dilation. The thermometric coefficient of change of pleasure
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gives the relative change in the pressure for change in temperature at 10 (at constant volume). The third useful quantity is the compressibility 
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which gives the relative decrease in volume for a unit increase in pressure (at constant temperature). If
p=ƒ(V,T),    then  
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If the pressure is constant, then dp = 0 and 
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Hence
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This result shows that if we know, for example, the compressibility and the thermometric coefficient of change of pressure, we can calculate the value of the thermometric coefficient of dilation.

The Equation of the Gas State

The simplest equation of state is that of a rarefied gas. It obtains by Mendeleyev in the form of a signed formula that combines. Clapeyron’s equation states that pV/T is a constant for a given mass of gas:
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Avogadro’s law states that gram molecules of different gases at constant temperature and pressure occupy volumes, i.e. 22.41 liters  at a temperature of 00 C and a pressure of 1 atmosphere = 1.01·105 N/m2. Hence, for a mole of any gas, the equation assumes the form

                                            pV=RT,                                          (13.10)
here V is the volume of a mole of gas; R is the universal gas constant.

                                          R=8.31 I/mole·K.                             (13.11)
In the most general case 
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where k is the number of moles; m is the mass and µ is the number of moles; gases obeying the equation of the gas state are called ideal gases. 
For ideal gases, the coefficient of dilation, change of pressure and compressibility are given by the following simple formulas
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At a temperature of 00 C (T=273.1 K) 
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Lecture 14. The Equations of State
of REAL Gases

The simplest correction that can be introduced into the equation for ideal gases takes into account the volume of the gas molecules. It is evident that a gas cannot be compressed to zero volume even if the pressure is infinitely large. Hence, the equation of state may be written in the form
                                       P (V - b) = R T,                                    (14.1)
where b is a constant that takes account of the finite volume of the molecules. The greater the number of constants introduced into the equation of state the easier it is to achieve close agreement between experimental and calculated agreement values, but the more difficult it is to predict changes by means of the formula. Van der Waal’s equation contains two constants 
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The pressure satisfies the equation of the gas state (p = RT/V), when the forces of attraction between the molecules are neglected. But due to the mutual attraction of the molecules, the pressure on the walls of a vessel should decrease by some value p1. Thus 
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Now, taking the finite volume of the molecules into consideration,
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Why does p1=a/V2?  Here, we reason as follows: lets consider the gas volume divided into two parts. One part, then attract the other. The forces of attraction are proportional to the number of molecules in the left-hand part and to the number of molecules in the right – hand part or the forces of attraction are proportional to the square of the density, i.e. inversely proportional to the square of the volume.
Kinetic Theory of Gasses

Comparison of the volume of a molecule with the space available to it show how little of the space is occupied by molecules. It is evident that for such a low density collisions between molecules will be relatively rare. 

The distance traversed by a molecule between two consecutive collisions (the range of a molecule) is a random quantity that may sometimes be very small or very large for individual molecules. 

The mean free path or, for brevity, the range l is related to the average velocity v of the molecular motion and the average time τ between two collisions by relation
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Let us project the maximum cross-section of the molecules on the base of the cylinder. Average area of cross-section σ is called the effective cross-section. If the cylinder base is equal to 1 cm2, cylinder length equal to l, and the number of molecules per unit volume equal to n, then there will be a total of nl molecules in the cylinder. The projections of cross-sections of these molecules will completely cover the cylinder base when (n l S = S\σ); under these conditions, the value of l will have  an order of magnitude that is close to the average range of the molecule, i.e.
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More rigorous calculations confirm the validity of this rough estimation. In the exact formula, the factor 21/2 enters in the denominator
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where σ has a constant magnitude for a given gas. The mean free under normal conditions is in air – 600 Ǻ, in nitrogen – 600 Ǻ, in hydrogen - 1.100 Ǻ and in helium – 1.800 Ǻ.

Gas Pressure

Assume that we have a gas enclosed in a spherical tank of radius R and volume V. A molecule moves rectilinearly and uniformly with some velocity v, strikes the wall of the vessel and rebounds at an angle equal to the angle of incident.

Traversing chord of equal length, 2 R sin θ, time after time, the molecule strike the wall of the vessel    
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 times per second.

For each impact, the momentum of the molecule changes by 2mvsin θ. The change in momentum per second is equal to
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The change in moment for each impact of molecule on the wall contributes to the overall force of the gas pressure. It may be assumed in accordance with the fundamental law of mechanics that the force of the pressure is simply the change occurring in the momentum of all the molecules in one second:
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or, factoring out the constant ,
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Assuming n molecules are contained the gas, we may introduce the concept of the average of the velocity squared of a molecule, which, is determined by the formula
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The expression for the force of the pressure may now briefly be written as following:
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Dividing this expression by 4πR2, the surface area of a sphere, we obtain the gas pressure 
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Replacing 4πR3 by 3V, the following interesting formula is obtained:
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Thus, the gas pressure is proportional to the number of gas molecules and to the average value of the kinetic energy associated with the translator’s motion of a gas molecule.

A very important conclusion may be drawn by comparing the obtained equation with the equation of the gas state:

                                            pV=µRT.                                        (14.15)   
The average kinetic energy of molecular translation depends only on the absolute temperature and moreover, is directly proportional to it.

The  ratio                           
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is known as Avogadro’s number. It’s the number of molecules in one gram molecule and is a universal constant:  Na = 6.02·1023. The reciprocal quantity 1/N is equal to the mass of a hydrogen atom: m = 1/N=1.66·10-24, another universal constant is the quantity 
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,  which is called Boltzmann’s constant. Thus 
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Energy associated with one degree of freedom is 
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For the average of the velocity squared, we obtain
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where µ the molecular mass .The square root of the average of the velocity square is called the root-mean-square velocity:
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We obtain the following simple expression for the number of molecules in a unit volume:
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Avogadro’s law follow from this and may be stated as follows: for equal pressures and temperatures, all gases contain the same number of molecules per unit volume. Thus, under normal conditions (at a pressure of 1 atm and a temperature of 00 C), 2.683·1019 molecules (Loschmidt’s number) are contained in 1 cm3.

For describing each type of thermal molecular motion (translation, rotation or oscillatory) we have to introduce some values. For example, in order to define the translational motion of a molecule we have to know the magnitude and direction of velocity. It is sufficient to mention three ones in this case: the velocity v and two angles φ and θ formed between the direction of the velocity and the coordinate planes or, otherwise, three projections of the velocity on the coordinate axes vx, vy and vz
It should be noted that these three values are not dependent on each other, i.e., at a given v the angle φ and θ may have any values and, on the contrary at a given angle φ there may principle holds for the case when at a given value of vx no restriction is imposed on the values of vy and vz and vice versa. Consequently, in order to describe the translational motion of any molecule in space we must specify three independent value v, φ and θ, or vx vy and vz. hence, the energy of translational motion of a molecule is 
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In order to describe rotational motion of a molecule about its axis we must specify the value and direction of the angular velocity of rotation ω, i.e. we must know again three independent values ω, φ and θx or ωx, ωy and ωz. Hence, the energy of the rotational motion of a molecule has the form
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where Ix, Iy and Iz are the moments of inertia with respect to three mutually perpendicular coordinate axes. In order to describe the oscillation motion of atoms in any molecule we have to resolve this motion into simple motions occurring along definite directions. The frequency and amplitude of vibrations in one of the directions do not depend on the frequency and amplitude of vibration in any other direction. If each of these rectilinear vibrations is harmonic, then it may be described by the formula:
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The values, which are not dependent on each other defining the state of the given physical system, are called the degrees of freedom of this system. A molecule of monatomic gas possesses three degrees of freedom of translational motion; a diatomic molecule possesses three degrees of freedom of translational and two degrees of freedom of rotational motion. Those molecules that have three or more atoms possess three translational and three rotational degrees of freedom. If oscillatory motion also participates in the energy exchange, then each independent vibration is supplemented with two degrees of freedom.

We may calculate the mean energies per one degree of freedom of translational εtransl, of rotational εrot and oscillatory εosc motions. Then the total energy of thermal motion of all N molecules is equal to
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According to the postulates of the molecular-kinetic theory the mean energies of all types of thermal motions of molecules are connected with the temperature. In the case of rarefied gases for each degree of freedom of translational and rotational motion of molecules the energy remains unchanged on the average and it equals:
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where k = 1.38·10-23 J/0K (Boltzmann’s constant). We may easily calculate the total energy of random motion of molecules of any system possessing N molecules
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where i = itransl+irot+iosc is the number of degrees of freedom of each molecule of a given system.

Absolute Temperature

Absolute temperature (T) is a positive quantity T>0. If two physical systems had got non-equal temperatures and came into contact with each other a heat would pass from the system having higher T to the system, having lower T. If T1=T2, heat wouldn’t pass. Absolute T of gas is directly proportional to the mean kinetic energy of the gas molecules. There is an important equation, concerning this relation:

                            
[image: image274.wmf]kT

2

i

2

m

E

2

=

u

=

,                                      (14.29)
where i is the number of degrees of freedom of molecule. i=3 for monoatomic molecules, i=5 for diatomic molecules, i=6 for threeatomic molecules (x, y, z), k=1,38·10-23 J/K where k – is Bolfrmann’s constant.

Lecture 15. Processes in the ideal gases

1. Isothermal process
T, m = const.

Equation of Klapeyron-Mendeleyev results in PV=const. This is Boyle’s law.  The graph of isothermal process (Fig.15.1):      
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Figure 15.1

2. Isobaric process           
                                                   P, m = const.
The volume of a gas varies directly as the absolute T:
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The graph of isobaric process (Fig.15.2):
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Figure 15.2
The volume of gas varies directly as the absolute temperature

3. Isochoric process                     V, m = const,
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The graph of isochoric process (Fig.): 
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Figure 15.3

The pressure of a gas varies directly as the absolute temperature.

Distribution of Gas Molecules by Velocities
Every gas molecule has got its velocity. A statistical method is used for description, of molecules distribution over velocities. The velocities of individual molecules vary over a wide range of magnitude. There is a characteristic distribution of molecule velocities for a given gas. It depends on the temperature. 

Maxwell first solved the problem of the most probable distribution of velocities in a very large number of molecules. His molecule velocity distribution law for a gas is 
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The function                
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denoting the relative number of molecules per unit velocity interval is called the distribution function or the function of velocity distribution. This distribution of molecule velocity is represented graphically in fig.15.4

[image: image282]
Figure 15.4.
Here the shaded area   
                                           
[image: image283.wmf]N

dN

dV

)

(

f

=

u

.                                (15.3)     
In other words it’s equal to the relative number of molecules whose velocities are within  
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The velocity which corresponds to the max value of the distribution function and which is denoted by 
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m.p. is called the most probable velocity of gas molecules. If temperature increases, the curie in figure changes as shown. But the area under the curve remains the same.

We showed difference between three kinds of velocities:

1. The mean square velocity: vm.sq.; 

2. The most probable velocity: vm.p.; 

3. The mean velocity  vm.;

Let’s consider them in detail.

1. By definition the mean square velocity
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where N is the total numbers of molecules.

The mean square velocity is related to mean kinetic energy of gas molecules. The latter is directly proportional to the absolute temperature: 
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The translational motion of molecules has got three degrees of freedom according to three axis. Each degree of freedom of any molecule acquires the average energy which is equal to ½ kT. From  the last equation we have got
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as  kNA=R; m0NA=μ, where m0 is the mass of one molecule.

2. The velocity which corresponds to the max value of the distribution function of gas molecules is called the most probable velocity. It is denoted as 
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m.p.. One can find this value as follows:
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3. The mean velocity 
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Figure 15.5
Consequently 
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Transfer Phenomena 
Diffusion

The phenomena, which are related to the chaotic molecule motion are called the phenomena of transfer. To these belong diffusion, heat conductivity and internal friction. The phenomena of transfer are described by the following values: 
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 - the mean free path of molecules between two collisions; 
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 - the mean velocity of molecules;  
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- the mean time between two collisions; 
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- the mean number of collisions per unit time: 
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Diffusion denotes the process of leveling out concentrations due to the transfer of a substance by means of molecules motion. The amount of matter dm, diffusing though the area S per unit time dt is proportional to density gradient:

                                  
[image: image303.wmf].

Sdt

Dgrad

dm

r

-

=

                               (15.11)  
The density of mass flow:
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where D is diffusion coefficient, ρ - density of matter. The diffusion coefficient 
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The unit of this coefficient   
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 Gradual passage of an ideal gas from a nonequilibrium state into equilibrium state occur due to the so-called phenomena of transport – diffusion, thermal conductivity and internal friction. Let us first  examine diffusion. Suppose that gas density ρ is different in various parts of its volume and also imagine that I is the surface of equal density where ρ has the same volume every where, and I I is a similar surface with  destiny ρ+Δρ. Now , chose a point A on the  surface I and then draw a normal N towards the surface II directed  to the side of density growth.

Denote by Δl distance between the adjacent surfaces with equal density, the distance being measure along this normal. In this case the relation 
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 will define the rate of density change in the direction of the normal towards the surface of equal density (the density gradient in a given place). In amount of matter dM diffusing through the area S per unit time dt is proportional to S, dt and the density gradient.
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Where D is the coefficient of diffusion and it depends on the property of the gas. Let us consider the thermal conductivity in a gas. Suppose that I is an isothermal surface drawn through the points whose temperature is the same and it equals T and I I is a similar surface, passing through the points with temperatures T+ΔT. Then 
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 is a temperature gradient showing the rate of change gas temperature in the direction of the normal to the isothermal surface. The resultant transfer of heat dQ through the area S per unit the temperature gradient
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Where χ is the coefficient of thermal conductivity and it depends on the property of the gas. We shall presently investigate the internal friction occurring between two neighboring gas large when they move with respect to each other. Suppose we have two larges I and II moving with velocities υ and v +Δv, we denote the distance between these lagers measured in the direction perpendicular to their velocities by Δl. We introduce the concept of velocity gradient: 
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, which show the rate of change gas velocity in the direction perpendicular to this velocity. It is evident that besides the regulated motion, the molecules of gas perform also random thermal motion, pass from one large into another and vice versa. Each molecule with mass m, passing from large, changes its momentum by mΔv by the number of molecules, passing from one large into another per second, we obtain the resultant change of momentum, occurring in each large in unit time.

According to Newton’s second law the change of momentum in the system per second is the external force applied to it, or a force of friction acting on the given large by the neighboring larges. This force is proportional to the area S and velocity gradient
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Where m is a coefficient of the internal friction which depends on the property of the gas. For an ideal gas
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Where λ is the mean free path of molecules between two collisions, υ is the mean molecular velocity, ρ is the gas density, Cv is the specific heat.

Heat Conductivity
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where 
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 is called the coefficient of heat conductivity,
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Internal Friction

The force of internal friction (viscosity) arises in gases if one gas layer slides over another. The force of internal friction is proportional to the velocity gradient and area S (the Newton’s law):
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where f  is the force per unit of area; 
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 – is called the coefficient of internal friction:
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The density of impulse flow:    
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Lecture 16. Internal Energy of a Gas

The following formula for the internal energy of a monatomic gas will have very broad application:
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where N is the number of molecules. For 1 mole of an ideal monatomic gas 
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Hence for the thermal capacity of 1 mole of a monatomic gas, we obtain
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The energy of polyatomic molecule consists of the energy of translation, the energy of rotation and energy of vibration each other. Energy of molecules and atoms of the ideal gas are called an internal energy. One may say, that internal energy is a simple function of state. This means, that any state of gas corresponds to its own value of U. For ideal gas U depends upon temperature, amount of gas and upon a kind of a molecule:
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where m is the mass of the gas; i is the number of the gas molecule of freedom degrees. As number of molecules 
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The change of the internal energy as a result of temperature change is equal to:
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One can see, that dU depends upon dT.

Work performed by Gas

Let’s assume that a gas is inside a vessel, provided with a piston. If gas extends, a work is performed by gas. According to dynamics a work may be expressed as:
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Figure 16.1
Let’s multiply and divide this formula by S: 
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In this case 
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. Consequently: dA=pdV. This quite a general formula. The first law of thermodynamics may be written now as: 
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The rule of signs is the following: V2>V1 
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 dV>0 
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 dA>0, gas expands and performs a work over other bodies. In this case the work is positive.
If                                  V2>V1 
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 dV<0 
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 dA<0. 
     

gas is compressed in this case and work is performed over gas by other bodies, the work is negative.

Temperature and Heat

The components of any substance, atoms and molecules, are in a state of constant thermal motion. When all the properties of a body remain unchanged, we say that the state of the body has not changed.

Heat exchange is said to take place when the external medium or surrounding bodies act on a body or system under consideration so as to change the state of this body or system of bodies by nonmechanical means.

If there is no heat exchange between the bodies, they are in thermal equilibrium and have the same temperature. The temperature scale is selected as follows. We call the temperature of the melting point of ice 00 and that of boiling point of watcher 1000 (at a pressure of 760 mm of mercury). Measuring the hydrogen pressures p0 and p100 at the two points, and drawing a straight line through the plotted points, we obtain the Celsius, or Centigrade, scale. The equation of this line has the form.
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The straight line intersects the t-axis at a temperature of  -273.10C. This is absolute zero. By definition, lower temperatures are not possible.

If  T = t + 273.10 is called the absolute temperature or the temperature in degrees Kelvin (K). A body consisting of molecules is considered as a system of moving and interactive particles subjected to the laws of mechanics. Such a system of molecules has an energy consisting of the potential energy of the interacting particles and their kinetic energy of motion. This energy is called the internal energy of the body.

The quantity of energy transferred to a body by mechanical means is  measure by the amount of work done on the body. The quantity of energy transferred through heat exchange is measured by the quantity of heat.

The first law of thermodynamics

The law of conservation of energy excludes the possibility of any loss in the energy exchange. The difference in the energies of the system for the two states must equal the sum of the heat and work obtained by the system from the surrounding bodies. The law of conservation of energy expressed in the above detailed form is called the first law of thermodynamics.

Let us assume that heat is positive when it is imparted to the system and work is positive when a body performs it against the action of external forces. The first law of thermodynamics may then be written in the form.
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i.e. the heat applied to a body goes to change the internal energy and perform the work of the body.

If the heat is measured in calories, then it must be transferred into joules (1 Joules = 0.239 cal)
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Thermodynamic Process

In mechanics, work is usually representes a product of a force and a distance. In thermodynamics we are usually interested in the work changing the volume of a body. Thus 
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In a pressure-volume diagram, the work of compression or expansion can be represented geometrically. We have assumed that work is position when a body does work on the surrounding medium, i.e. work of expansion.

Accordingly, work of compression in negative. If a body is transferred from state 1 to state 2 as a result of some process, and then transferred back to its original state via the some path, the total work of such a process is naturally equal to zero. However, the situation is completely different when the “forward” and return paths differ. Processes in which a body returned to its original state via a different path are called cyclical processes. The work performed during a cycle is represented by the enclosed area (hatched in the figure).
Specific heat

The quantity of heat, required to change the temperature of a body by one Kelvin is called the heat capacity:
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The quantity of heat required to raise the temperature of one kg of a substance by one Kelvin is known as the specific heat capacity c of that substance and is measured in 
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  We showed difference between Cp and Cv. Cp is heat capacity at p=const, Cv is heat capacity at V=const:
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If V=const dV=0 and as a consequence the performed work is equal to zero. Thus in this case the first law may be expressed as:

                                              dQ = dU.                                      (16.17)
Consequently:                       
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dU=CvdT. Now the first law of thermodynamics may be written as: 

                                  dQ = CvdT + pdV.                                   (16.18)
Differentiating this equation with respect to T, provided p=const, we obtain:
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However from the equation pV=RT (v=1 mole): pdV = RdT;    
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This equation is called Mayer’s equation. From this equation you can see, that Cp>Cv. Let’s calculate Cp and Cv
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(  is called Poisson’s coefficient.
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Let’s fill in the table:
	Molecule
	i
	U, 
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Application of the first law of thermodynamics to gas processes

We have obtained the general formula 
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a) isothermal process; T=const
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                 Figure 16.3
b) isobaric process;  P=const.
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By the way         
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Figure 16.4
c) isochoric process;  V=const. 
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                                      Figure 16.5 
d) Adiabatic process

The process in which there is no heat exchange between a gas and surrounding medium is called adiabatic process. This process is a fast one.

For the process under consideration: 
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Let’s consider the equation, that results from the first law of thermodynamics:
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Taking the derivative from the last equation we obtain:
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Substituting last equation with the equation that results from the first       law, we’ve got:
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Dividing last equation by CppV and taking into account, that 
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And finally, the adiabatic process equation may be expressed as: 
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Other form of this equation is given by:
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One can get it:
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Figure corresponds to the adiabatic process:
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Figure 16.6
Graphically this process is represented by the curve, which is steeper, than the curve of the isothermal process. A work, performed by gas is expressed as the area under the curve (shadowed). The following equation can be derived: 
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where V2>V1.
Lecture 17. Cycles

A process in which gas passes through a series of intermediate states returning exactly to its initial state is called a cycle. Cycles that repeat continuously are the basis of any heat engine. A heat engine consist of three parts. It contains a working body and heat source and a refrigerator.

By definition an efficiency of an engine is given by 
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Let’s consider the following cycle fig.16.1:
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         Figure 17.1.
The First Law of thermodynamics results in:

                        1→2:  
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The sum of these equations:
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Thus we have got:
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The principle of operation of heat engine

A heat engine converts heat into work. For it, we must have at our disposal two bodies at different temperatures, between which heat exchange is possible. In the presence of two such bodies, the process of conversion of two such bodies, conservation the process of conversion heat into work may be described as follows: a substance capable of expanding (the working substance) is brought into contact with the hot body/ heat Q1 is taken from the hot body and is expanded on the work of expansion, A1 which is transmitted to surrounding bodies. The working substance is then brought into contact with the cold body and transfers heat Q2 to it at the expense of the work A2 performed on the working substance by the external forces. The overall process must be cyclic. The working substance returns to its initial state at the end of each cyclic. The law of conservation of energy
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The network transmitted to a working substance by an external medium is equal to the difference in the heat absorbed from a hot body and given up to a cold body. Accordingly, of the engine as a whole is 
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The second law of thermodynamics imposes certain conditions on the operation of a heat engine. If a process is assure to be reversible, the change in entropy of the working substance for the  entire  cycle should equal zero/ stated otherwise, the change in entropy for the expansion process must equal the change in entropy for the contraction process
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In the case of an irreversible process
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Carnot’s Engine. Cycle of Carnot

Carnot’s engine is an ideal engine. It has the ideal gas, as a working body. This engine works using sours of heat at the temperature T1 and a refrigerator at the temperature T2. The complete cycle of Carnot consist of two isothermal and two adiabatic processes. Cycle of Carnot is represented on the next figure:

[image: image423.png]



Figure 17.2
In region 1→2 the gas obtains heat Q1 from a heat source and performs a mechanical work A1. Its temperature T1 is a constant value (isothermal process). In region 2→3 the gas performs work by decreasing internal energy. Temperature of the gas decreases. T2<T1 (adiabatic process). Further in region 3→4 the gas is compressed isothermically. It gives heat Q3 back to the refrigerator. The work is performed upon the engine and is negative. In region 4→1 gas is been compressed further by external bodies. The work is performed upon the gas and its temperature increases (T2<T1).

Work and efficiency of Carnot’s Cycle

We shall now derive the expression for the efficiency of an ideal heat engine operating without losses in a reversible cycle. Let us first consider the theoretical four-stroke. Carnot cycle represented in fig.17.2.  .
The Carnot cycle consists of two isothermals (for T1 and T2) and two adiabatic. Assure that the first stroke of the cycle is an isothermal expansion from state 1 to 2 – the working substance is in contact with the hot body whose temperature is T1 and the process takes place very slowly. When state 2 is reached, contact with the hot body is broken, the working substance is thermally isolated and it has the possibility of expanding further. Work occurs at the expense of the substance is allowed to drop to T2 from this point (state 3), two-stoke contraction begins. The working substance comes in contact with the cold body at T2 ant isothermally contracts to state4. Here, the working substance it is again thermally isolated and the contraction continues, now adiabatically, with the working substance being heated, at the expense of performed work, to the initial temperature T1, if the process is reversible, then
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For  irreversible processes, the entropy  of the entire system, consisting of the cold body, the hot body and the working substance, increases i.e. the entropy increment 
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Thus, 
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 and, therefore the efficiency of a Carnot cycle is
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There is no cycle better than the Carnot cycle and, in this sense, it serves as a model for designers of heat engineers. They strive to make actual cycles approach the cycle of this ideal engine. Suppose that an ideal gas performs a cycle, i.e. it passes through a series of intermediate states returning exactly to its initial state.

Let us find out whether these processes obey the relation
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Denoting the integral calculated for the cyclical process by 
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we obtain a more accurate form of this expression
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Let us examine cycle that proceeds in a straight direction, when the gas performs positive external work at the expense of heat absorbed from the outside. To calculate the integral over a close contour let us divide in into the sum of integrals of separated sections
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Each of these components represents a certain change in entropy in a definite section of a cycle. Let us assume that the process is performed by 1 gramm-mole of gas (μ/μ=1).then the equation for the process, shown in fig.17.2 a becomes 

dQ1=CpdT; 

dQ2=CvdT; 

dQ11=CpdT; 
dQ21=CvdT;

For isobaric process 1-2 and 3-4 the change in entropy is
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For isochoric process 2-3 and 4-1 the change in entropy
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In result we obtain
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But, according to the equations of the process for the isobars 1-2 and 4-3 we have

V2/V1=T2/T1;

V3/V4=T3/T4;

Since V1=V4; V2=V3 then 
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Using the above relations we may easy prove that the expression
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i.e. the entire change in entropy of an ideal gas is zero as a result of such a cycle. The same result can be obtained for other processes as well. Let us consider the Carnot cycle consisting of two isothermal and two adiabatic curves.

The admission of heat Q1 from outside proceeds isothermally (1-2) when the gas is in thermal contact with the heat source having high temperature T1. then, being in state 2, the gas separates from the heat source and performs adiabatic expansion (2-3) at which no heat exchange with the surrounding medium takes place. In this case the gas performs external work at the expense of its internal and as a result the temperature of gas drops to the T2. After this the gas comes in contact with the coolant which has a temperature T2 and the isothermal compression takes place (3-4). In this case the gas give to the  work performed by the external forces at compression. Begin in state 4 the gas is separated from the coolant and is compressed adiabatically (4-1) to the initial state 1. the rise in temperature from T2 to T1 occur at the expense of work of the external compressive forces.

The change in entropy during isothermal processes 1 - 2 and 3 - 4is
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The change in entropy during adiabatic processes 2 - 3 and 4 - 1 equals zero, we can write the equation TVγ-1=const. For this processes
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Hence, the total change in entropy for the Carnot cycle is also zero
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For the Carnot cycle the efficiency is expressed only through the temperature of the heat source and the temperature of the coolant
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Entropy
In the middle of the last century it was found that side by side with internal energy a body has yet another remarkable function of state, namely, entropy. If a body or system absorbs the heat ΔQ during an infinitesimally small transition from one state to another at a temperature T, the ratio 
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where dS is the change of entropy, dQ is a heat energy, which is obtained by a system, T is the temperature.

The statement that a function exists whose differential is 
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 is known as the principle of entropy existence. Entropy S is a simple thermodynamic function of state. Thermodynamic defines the change of entropy only. Elementary heat dQ is positive if it is obtained from the outside and dQ is negative if it is given up by the system into the surrounding medium. The change of entropy during the equilibrium conversion from one state into another is defined by the formula:
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During equilibrium cycling process this change equals zero. It can be expressed as:
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The changes of entropy during the Carnot process equal zero.  dS=0. If a process is non- equilibrium entropy increases.

Assuming S=0 at T=0, the entropy of a substance at the temperature T may be determined by the formula
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If the heating occurs at constant pressure substituting the value for ΔQ obtains from the equation for the first law of thermodynamics. We obtain
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By means of the equation of the gas state, we can eliminate the pressure from this equation, obtaining 
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Taking the indefinite integral, we obtain an expression for the entropy that includes an arbitrary constant
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It is also possible to take the definite integral of dS, where the limits are two states: for ideal gases
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The entropy increases when heat is transferred to the body.

Lecture 18. The second law
of thermodynamics

As already stated, reversible processes, strictly speaking, do not exist. As a matter of fact: in all unidirectional processes, the entropy increases. In the case of heat exchange between two bodies the overall change in entropy of the entire system is 
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Where Q1 is the heat absorbed by the colder body and Q2 is the heat given up by the hotter body. If T2 is greater than T1, then Q1 = - Q2 > 0, since heat transferred to a body is considered positive. Hence,
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During heat exchange, there is an increase in the overall entropy of the system in which the heat exchange occurs.

The second law of the thermodynamics: for closed system the entropy of thermally isolated system increases or remains the same. Both laws of thermodynamics may be combined in the single formula
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   .                                        (18.3) 
The first and the second laws of the thermodynamics define the work of periodically operating heat engines  and  refrigerating installations, designed for conversion of heat energy into mechanical work and vice versa.

The first law of thermodynamics states: “It is impossible to construct a continuously operating heat engine which does a certain amount of external work and returns to its original state without obtaining any energy from an external source.”

Repeating such a cycle we would be able to accomplish any amount of work in the surrounding medium without doing harm to the engine and without consumption of energy from the surrounding medium. Such machines we may call perpetual motion of the first kind. 

The first law of thermodynamics asserts that no perpetual motion machine of the first kind is possible. It is assumed that as a result of a such cycle no residual change inside the machine occur and the latter with all its inside parts returns to the original state. 

Nevertheless, the first law of thermodynamics postulates the existence of such heat engines which would perform mechanical work at the expense of thermal energy absorbed from the outside. The second law of thermodynamics restricts the possibility of conversion of thermal energy into mechanical work, stating that it is impossible to construct a periodically operating  machine which would completely (at any temperature) convert an amount of heat entries into mechanical work and then assume exactly its original state. Repeating this cycle many times we would be able to transform the limitless stock of thermal energy of the ocean and seas into mechanical work. Those engines which are capable to fulfill such a task may be called the perpetual motion machine of the second kind.

This conclusion follows from the assumption that as a result of each cycle no residual effects occur in the engine where by, only the heat Q disappears in  the surrounding medium and mechanical work A = Q is done. Hence, the second law of thermodynamics states that no perpetum mobile of the second kind is possible provides the existence of periodical work of heat engines only of the type exhibited in next figure.

The source of heat which supplies the engine with heat energy Q1 should have a considerably higher temperature in comparison with the cooling agent to which the engine transfers an unused part of its thermal energy Q2
These engines which operate in equilibrium, i.e. reversible cycles, are called ideal heat engines. While performing reverse motions such engines can take heat Q2 from the cooling agent, use the same work A which is performed now by the external forces, and then transfer to the source of heat the amount of heat

                                               Q1= Q2 + A                                   (18.4)           
taken from it during the work in the formed direction.

The limitation of the first law of thermodynamics is the impossibility to predict the direction of process. There are no processes in nature, which in any agreement with the first law of thermodynamics. The second law of thermodynamics states the direction of processes in nature. There are some equivalent formulas of this law. 

German scientist Klausius formulated the second law of thermodynamics in 1850 as: - heat by itself can never flow from the bodies at the lower temperature to the bodies with higher temperature.

This process can be realized only if external work is done. For example, the refrigerator doses a work aced compels heat flow from a colder to a warmer body. German scientist Planck formulated the second law of thermodynamics as: 
- it is impossible to manufacture an engine which obtains a heat energy from the same source and transforms it into equivalent mechanical work.

The engine with efficiency η = 1(Q2 = 0) that has only the source of heat without the refrigerator is impossible. Such engine is called the perpetual engine of the second kind. Therefore the second law of thermodynamics can be formulated as: 

- the perpetual engine of the second kind is impossible In real heat engine η > 1, as the only part of heat obtained from the heat source transformed into mechanical work:
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The heat Q2 passes to the refrigerator and disperse into the surrounding medium. English physicist Kelvin formulated the second law of thermodynamics:

- there is no process in nature the only result of which is to cool a heat reservoir and do external work.                                  

The next formula of the second law of thermodynamics is: 

- entropy of an isolated system increases or does not change:

                                             dS ≥ 0                                             (18.6)
As real processes are irreversible, then the entropy of isolated system increases:  dS > 0

Processes involving a change of gas state

Among many equilibrium processes occurring in any thermodynamically system we distinguish such processes at which one of the main parameters of state remains constant. These processes are 

- the isochoric process in which the volume of the system remains constant

     

                                      V = const                                                (18.7) 
During this process the system does not perform external work, therefore according to
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The change of the internal energy is equal to the quality of heat absorbed by the system or given up by it;

 - the isobaric process in which the pressure exerted by the system on the surrounding bodies, remains constant p = const. During this process the external work may be calculated by the formula 
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 - the isothermal process in which the temperature of the system remains constant    T = const. For gas processes according to
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the constancy of temperature mean constancy of the internal energy;

 - the adiabatic process in which no exchange of heat with the surrounding medium takes place     
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According to the first law of thermodynamics the equation becomes

                                       dQ = U2 - U1 + A = O;                     
                                               U1 - U2=A;                                   (18.11)
i.e. the external work is performed only at the expense of internal energy of the system. It the system performs positive external work, its internal energy decreases by an equivalent quantity and vice versa.

Let us consider the relations for the four simplest processes involving a change of gas state, whereby, in the main, we shall restrict ourselves to gases obeying the equation of the gas state. The first law of thermodynamics for gases will be used in the form

                                          dQ = dU + pdV                               (18.12)
I The Isochoric  Process. At constant volume, the first law of thermodynamics assumes the form ΔQ = dU.

Heat exchange occurs between the system under consideration and the external medium, but no work is performed on the external medium or the system under consideration.

The quantity of heat required to increase the temperature of a body one degree at constant volume  is called the thermal capacity at constant volume and is designated by the letter and is designated by the letter c with subscript V:
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We are unable here to prove an important theorem. If the dependence between p and T is linear, then cv cannot depend on the volume. Since such a linear dependence exists for gases obeying the equation of the gas state and Van der Waal’s equation, the cv does not depend on v for gases and the phrase “at  V=const” may be omitted in the above formula. Thus 
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In the dependence of Cv on the temperature is only slights, the  internal energy of a gas may be represented by the formula

                                   V=cvT+const                                          (18.15)          
For ideal gas, the constant does not dependent on the volume  and may be dropped. For a gas obeying Van der Waal’s equation, the constant equal –a/V. Thus  V=cvT for an ideal gas 
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for a gas obeying Van der Waal’s 

II The Isobaric Process. In the process, all three terms in the equation for the first law of thermodynamics are different from zero. In an isobaric process, the heat is used not only for raising the temperature. Let us divide both sides of the equation for the first law of thermodynamics by an incremental temperature 
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For gases, this formula may be rewritten as follows 
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For  an  ideal gas pV=νRT, then 
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and 

                                          cp=cv+υR                                (18.19)       
For molar thermal capacities

                                               Cp – Cν = R ,      (R = 8.31 I/mol K).
III The Isothermal Process. A system may absorb heat from the surrounding but not use it to raise the temperature. In the case of an ideal gas, whose internal energy depends only on the temperature and therefore cannot change in an isothermal process, the first law of thermodynamics assumes form 

                                          ΔQ=ΔA                                           (18.20) 
The work expansion from volume V1 to volume V2 is 
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Substituting for pressure from the equation of the gas state, and bringing the temperature out from under the integral sign since it is constant, we obtain 
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                        (18.22)       
IV The Adiabatic Process.  Adiabatic compression and expansion occur in the absence of heat exchange with the surroundings. This may be achieved by providing conditions that are in a sense the reverse of those for an isothermal process, i.e. perfect thermal insulation must be provided and the process must proceed very rapidly, so that heat is not able to escape from the system. In the case of compression, in accordance with the first law of thermodynamics, which is now written in the form? 

                                                   p dV = - dU,                      
the mechanical work is converted into internal energy of the body. In the case of expansion, on the other hand, the work is performed at the expense of a decrease in the internal energy of the system under consideration.

Using the expression for the thermal capacity of a gas at constant volume 
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and replacing the pressure p by 
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Assumer that in the initial state the gas parameters are  

                                                          V1,p1,T1

and the final state 

                                                           V2,p2,T2 .
Integrating the last equation from the initial to the final point of the adiabatic process, we obtain 
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Recalling that cp-cv=νR and introducing the designation
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Substituting for the temperature by means of the equation the gas state, we obtain
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The difference between the adiabatic and isothermal curves may be visualized as follows: for adiabatic compression, the gas becomes heated, so that for one and the same reduction in volume the increase in pressure is greater in the adiabatic process, since heating at constant volume leads to an increase in temperature. Fig. shows that the work of isothermal expansion is greater than the work of adiabatic expansion.

On the other hand, the work of isothermal compression is less than the work of adiabatic compression. We are assuming that the initial points of the processes coincide. From the first law of thermodynamics, it follows that in adiabatic processes the work must equal the change in internal energy
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Heat exchange between the gas and the surrounding medium may be calculated by the same formula which is used for calculation of heat required for heating of solids and liquids 
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Substituting the expression of internal energy
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and that of the quantity of heat into the equation of the of the first law of thermodynamics, we obtain
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Since 
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  is a constant, the specific heat of an idea gas depends on the amount of external work performed by this gas. Suppose that by Q is the heat imparted to a gas at constant volume. Thus, the equation for “c” gilds 
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Suppose that a gas absorbs heat but at this the pressure is constant. In this case the gas should expend and perform positive external work equal to 
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The specific heat at constant pressure assumes the form
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Comparing the expression for the special heat of an ideal gas at constant volume and pressure we obtain
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Questions

1 The mean free part or the range of a molecule.
2. The average of the velocity squared of a molecule 

3. The equation of the gas state 

4. Avoregadro’s number, Boltzmann’s constant

5. The root –mean-square velocity

6. Avogadro’s law

7. Internal energy of a gas, heat energy

8. What is heat exchange? Thermal equilibrium?

9. what is the temperature scale? Absolute zero?

10. The first law of thermodynamics

11. The thermometric coefficient of dilation

12. The coefficient of change of pressure

13. What is the compressibility?

14. What is the ideal gas?

15. Van der Waal’s equation

16. What is cyclical processes?

17. The Isochoric process, the Isobaric process, the Isothermal process

18. What is the thermal capacity? The adiabatic process

19. What is the entropy?

20. The principle of inereesing entropy

21. The second law of thermodynamics

22. The principle of operaion of heat engine

23. Efficiency of a Carnot cycle

24. What is the degrees of freedom?

25. Perpetual motion machines of the first kind

26. Perpetual motion machines of the second kind

27. What is ideal heat engines?

28. Diffusion, thermal conductivity and internal friction

Advisable literature
1. Gevorkjan R.G., Shepel V.V. A Course Of General Physics.- Moscow: Higher School, 1967.- 550 p.  2. Koshkin N.I., Shirkevich M.G. Handbook Of Elementary Physics.-Moscow: Mir Publishers, 1977.-272 p. 3. Kireev P.S. Semiconductor Physics.-Moscow: Mir publishers,1974.- 672 p. 4. Training aids for laboratory assignments on course of physics for all specialities students /Author: S. Lushchin and others.- Zaporozhye: ZNTU, 2002.-110 p.

Appendix A
Physics Glossary
acceleration
Objects that are changing their speed or their direction are said to be accelerating. The rate at which the speed or direction changes is referred to as acceleration. Some amusement park rides (such as roller coasters) are characterized by rapid changes in speed and or direction. These rides have large accelerations. Rides such as the carousel result in small accelerations; the speed and direction of the riders change gradually. 

balanced and unbalanced forces
A balanced force results whenever two or more forces act upon an object in such a way as to exactly counteract each other. As you sit in your seat at this moment, the seat pushes upward with a force equal in strength and opposite in direction to the force of gravity. These two forces are said to balance each other, causing you to remain at rest. If the seat is suddenly pulled out from under you, then you experience an unbalanced force. There is no longer an upward seat force to balance the downward pull of gravity, so you accelerate to the ground. 

centripetal force
Motion along a curve or through a circle is always caused by a centripetal force. This is a force that pushes an object in an inward direction. The moon orbits the earth in a circular motion because a force of gravity pulls on the moon in an inward direction toward the center of its orbit. In a roller coaster loop, riders are pushed inwards toward the center of the loop by forces resulting from the car seat (at the loop's bottom) and by gravity (at the loop's top). 

energy
Energy comes in many forms. The two most important forms for amusement park rides are kinetic energy and potential energy. In the absence of external forces such as air resistance and friction (two of many), the total amount of an object's energy remains constant. On a coaster ride, energy is rapidly transformed from potential energy to kinetic energy when falling and from kinetic energy to potential energy when rising. Yet the total amount of energy remains constant. 

force
A force is a push or a pull acting upon an object. Forces result from interactions between two objects. Most interactions involve contact. If you hit the wall, the wall hits you back. The contact interaction between your hand and the wall results in a mutual push upon both objects. The wall becomes nicked (if hit hard enough) and your hand hurts. Bumper cars experience mutual forces acting between them due to contact during a collision. Some forces can act from a distance without actual contact between the two interacting objects. Gravity is one such force. On a free fall ride, there is a force of gravitational attraction between the Earth and your body even though the Earth and your body are not in contact. 

friction
Friction is a force that resists the motion of an object. Friction results from the close interaction between two surfaces that are sliding across each other. When you slam on your brakes and your car skids to a stop with locked wheels, it is the force of friction that brings it to a stop. Friction resists the car's motion. 

g
A g is a unit of acceleration equal to the acceleration caused by gravity. Gravity causes free-falling objects on the Earth to change their speeds at rates of about 10 m/s each second. That would be equivalent to a change in speed of 32 ft/s in each consecutive second. If an object is said to experience 3 g's of acceleration, then the object is changing its speed at a rate of about 30 m/s every second. 

gravitational force
Any two objects with mass attract each other with a type of force known as a gravitational force. The strength of this force depends upon the mass of the two objects and the distance between them. For objects with masses as large as the earth and the sun, these forces are sizeable and have tremendous influence upon the subsequent motion. For objects such as two persons sitting in a theater, the force of gravitational attraction is so small that it is insignificant. In order for such persons to increase the force of attraction between them, they must add to their mass (maybe by eating more popcorn). Objects on the earth experience noticeable attractions with the earth due to the earth's large mass. 

inertia
Inertia is a tendency of an object to resist change in its state of motion. More massive objects have more inertia; that is, they have more tendency to resist changes in the way they are moving. An elephant has a lot of inertia, for example. If it is at rest, it offers a large resistance to changes in its state of rest, and so it's difficult to move an elephant. On the other hand, a pencil has a small amount of inertia. It's easy to move a pencil from its state of rest. More massive objects have more inertia and thus require more force in order to change their state of motion. 

kinetic energy
Kinetic energy is the energy possessed by an object because of its motion. All moving objects have kinetic energy. The amount of kinetic energy depends upon the mass and speed of the object. A roller coaster car has a lot of kinetic energy if it is moving fast and has a lot of mass. In general, the kinetic energy of a roller coaster rider is at a maximum when the rider reaches a minimum height. 

mass
The mass of an object is a measurement of the amount of material in a substance. Mass refers to how much "stuff" is there. Elephants are very massive, since they contain a lot of "stuff." 

momentum
Momentum pertains to the quantity of motion that an object possesses. Any mass that is in motion has momentum. In fact, momentum depends upon mass and velocity, or in other words, the amount of "stuff" that is moving and how fast the "stuff" is moving. A train of roller coaster cars moving at a high speed has a lot of momentum. A tennis ball moving at a high speed has less momentum. And the building you are in, despite its large mass, has no momentum since it is at rest. 

Newton's First Law of Motion
An object at rest or in uniform motion in a straight line will remain at rest or in the same uniform motion unless acted upon by an unbalanced force. This is also known as the law of inertia. 

Newton's Second Law of Motion
The acceleration of an object is directly proportional to the total unbalanced force exerted on the object, and is inversely proportional to the mass of the object (in other words, as mass increases, the acceleration has to decrease). The acceleration of an object moves in the same direction as the total force. This is also known as the law of acceleration. 

Newton's Third Law of Motion
If one object exerts a force on a second object, the second object exerts a force equal in magnitude and opposite in direction on the object body. This is also known as the law of interaction. 

period
A motion that repeats itself in cyclic fashion is said to be periodic. The time for one complete cycle is known as the period of the motion. The motion of a second hand has a period of 60 seconds. The periodic rotation of the earth about its axis is 24 hours. The periodic motion of an amusement park pendulum ride may have a period as high as 10 or 15 seconds. 

potential  energy
Potential energy is the energy possessed by an object because of its height above the ground. The amount of potential energy possessed by an object depends on its mass and its height. A roller coaster car is initially hauled by a motor and chain system to the top of a tall hill, giving it a large quantity of potential energy. 

speed
Speed is a measurement of how fast an object is moving. Fast-moving objects can cover large distances in a small amount of time. They are said to have a high speed. A roller coaster car moving at 60 miles per hour would be able to cover a distance of 60 miles in one hour if it could maintain this pace. 

velocity
The velocity of an object refers to the speed and direction in which it moves. If you drive north to your work place and your speedometer reads 35 miles per hour, then your velocity is 35 miles per hour in a northward direction. Velocity is speed with a direction and is important in understanding bumper car collisions. 

weight
Weight is a measurement of the gravitational force acting on an object. The weight of an object is expressed in pounds in the U.S. A 180-pound person is experiencing a force of gravitational attraction to the earth equal to 180 pounds. 

weightlessness
Amusement park rides often produce sensations of weightlessness. These sensations result when riders no longer feel an external force acting upon their bodies. At the top of the tower of a free-fall ride, a 100-pound rider would feel 100 pounds of force from the seat pushing as an external force upon her body. The rider feels her normal weight. Yet, as she falls from the tower, the seat has fallen out from under her. She no longer feels the external force of the seat and subsequently has a brief sensation of weightlessness. She has not lost any weight, but feels as though she has because of the absence of the seat force. In this context, weightlessness is a sensation and not an actual change in weight.
Appendix B
SI UNITS, CONVERSION FACTORS AND PHYSICAL ONSTANTS

 THE SI SYSTEM
This summary is based on the U.S. National Bureau of Standards Special Publication 330. Base units and symbols
Table B1 - SI base units
	Quantity
	Name
	Symbol

	Length
	metre
	m

	Mass
	kilogram
	kg

	Time
	second
	s

	Electric current
	ampere
	A

	Thermodynamic temperature
	keivin
	K

	Luminous intensity
	candela
	cd

	Amount of substance
	mole
	mol


Derived units
Derived units are expressed algebraically in terms of base units (Table 2). Many have special names (Table 3) and symbols which may themselves be used to express other derived units (Table 4).

Table B2 - Examples of SI derived units expressed in terms of base units
	Quantity
	SI unit

	
	Name
	Symbol

	Area
	square metre
	m2

	Volume
	cubic metre
	m3

	Speed, velocity  
	metre per second
	m/s

	Acceleration
	metre per sec squared  
	m/s2

	Wave number
	1 per metre
	m-1

	Density, mass density
	kilogram per cubic metre
	kg/m3

	Concentration (of amount of substance)
	mole per cubic metre
	mol/m3

	Activity (radioactive)
	1 per second
	s-1

	Specific volume
	cubic metre per kilogram
	m3/kg

	Luminance
	candela per square metre
	cd/m2


Table B3 - SI derived units with special names

	Quantity
	SI unit

	
	Name
	Symbol
	Expression
in terms
of other
units
	 Expression
in terms
of SI base
units

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	Frequency
	hertz
	Hz
	
	s-1

	Force
	newton
	N
	
	m kg s-2

	Pressure, stress
	pascal
	Pa
	N/m2
	m-1 kg s-2

	Energy, work, quantity
of heat
	joule
	J
	N m
	m2  kg s-2

	Power, radiant flux
	watt
	W
	J/s
	m2 kg s-3

	Quantity of electricity
electric charge
	coulomb
	C
	A s
	s A

	Potential difference
electromotive force
	volt
	V
	W/A
	m2 kg  s-3 A-1

	Capacitance
	farad
	F
	C/V
	m-2kg-1s4A2

	Electric resistance
	ohm
	Ω
	V/A
	m-2kg s-3 A-2

	Conductance
	siemens
	S
	A/V
	m-2 kg-1 s3 A2

	Magnetic flux
	weber
	Wb
	V s
	m2 kg s-2 A-1

	Magnetic flux density
	tesla
	T
	Wb/m2
	kg s-2 A-1

	Inductance 
	henry  
	H
	Wb/A 
	m2 kg s-2 A-2

	Luminous flux
	lumen
	lm
	
	cd sr

	Illuminance
	lux
	lx
	
	m-2 cd sr


Table B4 – Examples of  SI derived units expressed in terms of other derived units

	Quantity
	SI unit   

	
	Name
	Symbol
	Expression in terms
of SI base units

	Surface tension
                     
	newton per
metre
	N/m    
	kg s-2

	Heat flux density,
irradiance      
	watt per
square metre
	W/m2
	kg s-3

	Heat capacity
entropy     
	joule per
kelvin
	J/K        
	m2 kg s-2 K-1

	Specific heat     
capacity
specific
entropy
	joule per
kilogram
kelvin
	J/(kg K)
	m2 s-2 K-1

	Specific energy
	joule per
kilogram
	J/kg   
	m2 s-2

	Thermal
conductivity
	watt per metre
kelvin
	W/(m K)
	m kg s-3 K-1

	Energy density
	joule per cubic
metre
	J/m3
	m-1 kg s-2

	Molar energy
	joule per mole
	J/mol
	m2 kg s-2  mol-1

	Molar entropy,
molar heat
capacity
	joule per mole
kelvin
	J/(mol K)
	 m2 kg s-2 K-1 mol-1


Supplementary units.These may be regarded either as base units or as derived units.

Table B5 - SI supplementary units
	Quantity
	SI unit

	
	Name
	Symbol

	Plane angle Solid angle
	radian
steradian
	rad

 sr


Dimensionless quantities

The values of dimensionless quantities (such as the coefficient of friction, the refractive index, the relative permeability or the relative permittivity) are expressed by pure numbers. The corresponding SI unit is the ratio of the same two SI units and may be expressed by the number 1.
The writing of units
(a) The product of two or more units should be indicated by a dot, although it may be omitted when there is najisk of confusion with another unit, for example: N-m or Nm but not mN.
(b) A solidus (oblique stroke, /), a horizontal line, or negative powers may be used to express a derived unit formed from two others by division, for example: m/s, 
[image: image488.wmf]s

m

  or  ms-1.
(c) The. solidus must not be repeated on the same line unless ambiguity is avoided by parentheses. In complicated cases negative powers or parentheses should be used, for example: m/s2 or m.s-2 but not m/s/s; m kg/(s3A) or m kg s-3 A-1 but not m-kg/s3/A.
Multiples and sub-multiples of SI units.
Table B6 - SI prefixes

	Factor
	Prefix
	 Symbol
	Factor
	Prefix    
	. Symbol

	1012
	tera
	T
	10-1
	deci
	d

	109
	giga
	G
	10-2
	centi
	c

	106
	mega
	M
	10-3
	milli
	m

	103    
	kilo
	k
	10-6
	micro
	μ

	102
	hecto
	h
	10-9
	nano
	n

	101
	deka
	da
	10-12
	pico
	p

	
	
	
	10-15
	fermi
	f

	
	
	
	10-18
	atto
	a


Recommendations, (a) Prefix symbols are printed in roman (upright) type without spacing between the prefix symbol and the unit symbol.
(b) An exponent affixed to a symbol containing a prefix indicates that the multiple or sub-multiple of the unit is raised to the power expressed by the exponent, for example: 1 cm3 - 10"6m3 1 cm"1 = 10"2m"1.
(c) Do not use compound prefixes, for example: 1 nm but not 1 mμm.

 OTHER UNITS, PERMITTED AND FORBIDDEN
Permitted units
Certain units are so widely employed in everyday life that it is convenient to retain them for general use with SI units (Table B7).
Table B7- Units in use with the international system
	Name
	Symbol
	Value in SI units

	minute
	min
	1 min = 60 s

	hour
	h
	lh = 60min = 3600 s

	day
	d
	ld = 24h = 86400 s

	degree
	0
	1° = (π/180) rad

	minute
	`
	l' = (l/60)°= π/10800) rad

	second
	``
	1" = (1/60)' = (π/648000) rad

	litre
	l
	1 l = l dm3 = 10-3 m3

	tonne
	t
	1 t = 103 kg


Certain others are retained because of their particular convenience in specialised fields of science; and others, because their values expressed in SI units must be obtained by experiment, and are .therefore not known exactly (Tables B8 and B9).
Table B8 - Units used with the international system in special​ized fields
	Name
	Symbol

	electronvolt
	eV

	unified atomic mass unit
	u

	astronomical unit
	AU

	parsec
	pc


Table B9- Units to be used with the international system for a limited time
	Name
	Symbol
	Value in SI units

	nautical mile
	
	1 nautical mile = 1852 m

	Knot
	
	1 nautical mile per hour = (1852/3600) m/s

	angstrom
	 Å
	1 Å = 0.1 nm = 10-10 m

	Are
	a
	1 a = 1 dam2 = 104 m2

	Hectare
	ha
	1 ha = 1 hm2 = 104 m2

	Bam
	b
	1 b = 100 fm2 = 1023 m2

	Bar
	bar
	I bar = 0.1 MPa = 105 Pa

	standard atmosphere
	 atm
	1 atm = 101.325 Pa

	Gal
	Gal
	1 Gal = lcm/s2 = 10-2 m/s2

	Curie
	Ci
	1 Ci = 3.7 1010 s-1

	röntgen
	R
	1 R = 2.58 10-4 C/kg

	Rad
	rad
	1 rad = 10-2 J/kg  


Forbidden units
Do not mix SI with CGS units with special names (Table 10), or with units of other systems (Table B11).            

Table B10 - CGS units with special names
	Name
	Symbol
	Value in SI units

	erg
	erg
	1 erg = 10"7J

	dyne
	dyn
	1 dyn = 10~5N

	poise
	P
	1 P = 1 dyn-s/cm2 = 0.1 Pa-s

	stokes
	St
	1 St = lcm7s = Kr4m2/s

	gauss
	Gs,G
	1 Gs corresponds to 10" 4T

	oersted
	Oe
	1 Oe corresponds to  A/m

	maxwell
	Mx
	1 Mx corresponds to 10"8 Wb

	stilb
	sb
	1 stib = 1 cd/cm2 = 104cd/m2

	phot
	ph
	1 ph m 10* lx


                           Table B11 - Other units generally deprecated

	Name
	Value in SI units

	fermi
	1 fermi = 1 fm = 10-15 m

	metric carat
	1 metric carat = 200 mg = 2 10-4 kg

	torr
	1 torr = 133.322 Pa

	kilogram-force(kgf)
	1 kgf - 9.806 65 N

	calorie (cal)
	1 cal = 4.1868 J

	micron  (μ)
	1 μ = 1 μm = 10-6 m

	X unit
	

	stere (st)
	1 st = 1 m3

	gamma (γ)
	1 γ = 1 nT = 10-9 F

	Γ
	1 γ = 1 g = 10-9 kg

	Λ
	1 λ = 1 I = 10-6 I


 CONVERSION OF UNITS
The conversion tables are used as follows: to. convert the units in the row into the units in the column, multiply by the factor shown at their intersection. Example: to convert a stress in psi into a stress in bars, multiply by 6.90  10-2. 

Table B12
	Angle
	1 rad
	= 57.2958

	Current
	1 A
	= 1 Cs-1

	Density
	1 g/cm-3
	= 103 kg m-3

	Diffusion coefficient
	1 cm2/s
	= 10-4 m2/s

	Force
	1 dyn
	= 10-5 N

	
	1 pound force
	= 4.448 N

	Length
	1 ft
	= 0.3048 m

	
	1 in
	= 0.0254 m

	
	1 Å
	= 10-10 m

	Mass
	1 gr
	= 10-3 kg

	
	1 pound mass
	= 0.453 kg

	Surface energy
	1 erg/cm2
	= 10-3 J m-2

	Temperature
	1 0F
	= 0.556 0K

	Viscosity
	1 P
	= 0.1 N S m-2

	Volume
	1 gal
	= 3.78 10-3 m3


Table B13- Conversion table for stress and pressure            

	
	MNm-2
	dyn cm-2
	psi
	kgf cm-2
	kgf mm2
	bar
	ton in-2

	MN m-2
	1
	107
	145
	10.2
	0.102
	10
	6.35  10-2

	dyn cm-2
	10-7
	1
	1.4  10-5
	1.02  10-6
	1.02  10-8
	10-6
	6.35 10-9

	psi
	6.90  10-3
	6.90  104
	1
	7.03  10-2
	7.03  10-4
	6.90  10-2
	4.46 10-4

	kgf cm-2
	 9.80  10-2          
	9^0  105
	14.2
	1
	10-2
	0.980
	6.23 10-3

	kgf mm-2
	9.80
	9.80 107
	1.42 103      
	100
	1
	98.0
	6.23 10-1

	bar
	0.10
	106
	14.50
	1.02
	0.0102
	1
	6.35 10-3

	ton in-2
	15.75
	1.57 108
	2.24  103
	1.61  102
	1.61
	1.57 102
	1


Table B14 - Conversion table for energy

	
	J
	erg
	cal  
	eV             
	BThU
	ftlbf

	J
	1
	107
	0.239
	6.24  1018
	9.47 10-4
	0.737

	erg
	10-7
	1
	2.39 10-8
	6.24  1011
	9.47 10-11
	7.37 10-8

	cal
	4.18
	4.18 107
	1
	2.61 1019  
	3.96 10-3
	3.08

	eV
	1.60 10-19
	1.6 10-12
	3.83 10-17
	      1          
	1.52 10-22
	1.81 10-19

	BThU
	1.06 103
	1.06 10-10
	2.52 102      
	6.59 1021
	        1
	7.78 102

	ft lbf
	1.36
	1.36 107
	3.24 10-1      
	8.47 1018    
	1.28 10-3
	1


Table B15 -  Conversion table for specific energy

	
	J/mol
	cal/mol
	erg/atom
	eV/atom

	J/mol 
	1
	0.239
	1.66 10-17'
	1.04  10-5

	cal/mol
	4.18
	1
	6.94  10-17
	4.34 10-5

	erg/atom
	6.02 1016
	1.44  1014    
	1         
	6.25 1011

	eV/atom
	 9.63 104
	2.305 x 104
	1.6  10-12       
	1


Table B16 - Conversion table for fracture toughness

	
	MN m-3/2
	N-mm'3'2
	k.s.i. in1/2

	MN m-3/2
	1
	31.6
	0.89

	Nmm-3/2
	3.16 10-2
	1
	2.83 10-2

	k.s.i. in1/2
	1.12
	35.4
	1


 PHYSICAL CONSTANTS IN SI UNITS

	Acceleration due to gravity, g
	9.80 m-s-2

	Angstrom, Å
	10-10 m

	Atomic mass unit, amu
	1.661 10-27 kg

	Avogadro's number, N
	6.022 1023 mol-1

	Base of natural logarithms, e
	2.718

	Boltzmann's constant, k
	1.38  10-23 J 0K-1

	Capacitivity (vacuum), ε
	8.85  10-12 C V-1 m-1

	Electron charge
	1.60 10-19 C

	Electron mass
	9.11 10-31 kg

	Electron moment
	9.27 10-24 A m-2

	Faraday constant, F
	9.65 104 C

	Gas constant, R
	8.31 J mol-1  °K-1

	Gas volume (STP), Vo
	2.24 10-2 m3 mol-1

	Neutron rest mass, mn
	1.675 10-27 kg

	Plancks constant, h
	6.62  10-34 J s

	Proton rest mass, mp
	1.672  10-27 kg

	Velocity of light, c
	3.00  108 m s-1
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